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CONTACT PROBLEMS OF THE INTERACTION BETWEEN 
VISCOELASTIC FOUNDATIONS SUBJECTED TO AGEING 

AND SYSTEMS OF STAMPS NOT APPLIED SIMULTANEOUSLY* 

A.V. WANZHIRGV 

Plane contact problems of the interaction between inhomogeneous ageing 
viscoelastic foundations and arbitrary finite systems of rigid stamps, 
not applied and removed simultaneously, are investigated. Formulations 
of the problems are given. Systems of resolving two-dimensional integral 
equations are derived and methods are proposed for their solution. 
Numerical computations are presented for different kinds of ageing during 
interaction between a concrete foundation and two dissimilar stamps not 
applied,Isimultaneously. Qualitative effects are discussed. 

1. We consider the problem of the action of an arbitrary system of rigid stamps on a 
foundation possessing the properties of inhomogeneity , creep, and ageing /l-3/ under plane 
strain conditions. The times of application and removal of the system stamps are distinct. 
The foundations consist of two layers. The lower layer of thickness H makes contact without 
friction of adhesion with the rigid base, while the upper layer lies on the lower one without 
friction. Each i-th stamp makes contact with the section a,<~< bi of the upper layer of 
thickness h, where x is the horizontal coordinate. It is assumed that all the stamps are 
smooth and the upper layer is thin, i.e., bi - a,>hh/4/. The time of application of the 
i-th stamp is denoted by ri and the instant of removal by TiO(T~<riO; i =1,2, . . . . n), the force 
and moment acting on it are pi(t) and Mi tt) I respectively, where t is the time. 

Wewillwrite the equations of stateofalinearinhomogeneous ageing viscoelastic body in 
the most general form /3/ 

Q, 6, t) 
t 

eij(% t) = s s,, (x9 r) 
26 (t + x (x), x) - 26 (r + x (m), x) ’ 

?s 
QI (t + x (4, z + x(x), 4 dr 

Dkk (x3 t) 
ekk txT t, = E* (t + x (x), x) - 

t Q (x9 z) s E* (t + x (9, xl ’ 
<I 

Q* !t + x(x), 7 + x(x), 4 d-r 
Ql(tv z)=G(& [& + ok V] 
Qz (k z) = E* (r,& [&J + C* 6 @] 
E* (t) = E (t) [I - 2v1 (t)l-i, C* (t, z) = 11 - 2%. (t, z)I C (h T) 

Here eij (r, t), sij (x, t) and ekk ( X, t),akk (X,t) are the deviators and global parts of the 
strain and stress tensors, Q1 (t,.), Qz (t,.~), 61 (t, z), C* (t,z) and G (t) and E* (t) are the creep 
kernels, the creep measure , and the instantaneous elastic strain modulus under pure shear and 
multilateral compression, VI(t) and vz (t, 7) are Poisson's ratios for the instantaneous 
elastic strain and the creep strain, C(t,r) and E(t) are the creep measure and the instan- 
taneous elastic strain modulus under tension, n(x) is the inhomogeneous ageing function, x 
is the radius-vector of a body point, and r1 is the time the load is applied. 

We will assume that the upper layer is inhomogeneous and ages with depth, i.e., in the 
elastic and rheological characteristics ~3 y, where y is the vertical coordinate. The 
lower layer ages homogeneously and is characterized by the time of its fabrication roe 

It is well-known that most viscoelastic materials show almost elastic behaviour under 
multilateral compression. In this case we should set Qa=O and E* = const in (1.1). Then 
on the basis of /4, 5/ and the Volterra principle /6/ for layers satisfying these properties, 
we obtain a system of integral equations for n stamps 
l Prikl.Matem.Mekhan.,51,4,670-685,1987 
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(1.2) 

The additional conditions take the form 

(1.3) 

Here 4% (.r, t)= 0 in (1.2) and (1.3) when ri'<t<Tz. 
Here vt* and Eh* are integral operators describing the material of the upper layer (k = 1) 

and lower layer (k = 2), qi(r, 1) are contact stresses under the i-th stamp, while & (Q, a, ($ 
gt(z - (ai f bi)/ 2) are the settling, rotation, and shape of the base of this stamp, and 

k ((x - $)/H) is the kernel of the contact problem under the condition that the homogeneous 
layer lies without friction on the rigid base /S/. The form of vR* and Ek*(k = 1,2) and 
methods of decoding and inverting the expressions containing them are known /7/; consequently, 
we merely note that all the operations in time are referred to the Volterra operators. 

A number of materials, including concrete, are described quite well by Eqs.(l.l) under 
the conditions vl(t) = VZ(~,T)== v = const /a, 9/.Then for a base consisting a layers with 
Poisson's ratios independent of time, where vb and Et(t) are Poisson's ratios and instan- 
taneous elastic strain moduli under tension of the upper (k = 1) and lower (k = 2) layers, 
we will have /4, 5, 8/ 

6, (t) + at(t) (x - V) - g, (x - +) 

The additional conditions retain the form of (1.3). Bases of two kinds can still be 
considered when the upper layer shows almost elastic behaviour while the lower layer has a 
constant Poisson's ratio, and vice versa. The systems of contact problem integral equations 
fox such bases can be obtained by interchanging the places of the terms outside the integral 
with respect to the coordinate in (1.2) and (1.4). It should be recalled that a smooth 
contact is always assumed on its lower face for a homogeneous layer when Qz = 0, E* s const, 
because only then is the kernel k ((x - 5)/H) independent of the time and its form is known 
/5/. If v2 = const for the lower homogeneous layer then it can also be linked with a non- 
deformable foundation. The contact problem kernel here is independent of time as before. 

It should be noted that problems regarding rough viscoelastic foundations, foundations 
containing a pin-joint layer /lo, ll/, and contact problems of the wear of elastic and 
viscoelastic foundations by a system of stamps not applied simultaneously result in analogous 
systems of equations. 

The systems of equations of the above problems can be written in a single form containing 
Volterra operators in time and completely continuous, selfadjoint, and positive-definite 
operators in the coordinate. 

To be specific, we will consider the system of Eqs.fl.4) with the additional conditions 
(1.3) and we will reduce them to general form. We make the change of variables 

(1.5) x*= 2x--at--b, 2E--ai- b, 

bi--a, ’ E*= b.-_o iat G xv t Q 4 
1 i 

bl-at 
b =-5, 

1 1 
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qp (a?, P) = 
2q* (2, t) (i - v*‘) 2,rf (r - (“i + b,Yz) 

&(t--0) ’ gi* @*I = h--or 

’ ‘i* (“) = 
dP, (Cl (1 - -1’) 

c?& (t - TP,) (bf - ai) 

omitting the asterisks in (1.51 and setting 

A,,*u(~) = 5 ki,(~,E)U(E)dE (i, j-i, . . ., n; k-1,2) 
-1 

we obtain (I* is the identity operator) 

c(t) (I+ - L,* @v t)lq, (I, t) -I- (I* - L,* (% tl) j, A,,%, (5, 4 = 

61 tf) 3- % (4 6P - gi (r) 
Qi (5% t) E 03 t;<t<q (i==l, . . ..n) 

0.6) 

Relationships (1.61 and (1.7) yield a step-by-step process for obtaining the system of 
resolving equations of the problem, where we have k equations with k unknowns at the time of 
interaction of k stamps with the foundation and the whole loading history of the foundation 
is here taken into account. The system of equations is obtained at each step individually 
for the specific problem. 

For instance, we will consider the successive attachment of single stamps. Then for 
~e:e<t,+, (1.6) takes the form 

where the components on the right-hand side of (1.8) containing gm(r,tt) are found from the 
solution of the problem in the preceding step and depend on I and t. They determine the 
surface distortion of the viscoelastic foundation because of material creep. In fact the 
solution (1.8) is equivalent to the solution of the problem of attaching k stamps with bottom 
shapes defined by the last three terms on the right-hand side of (1.8), to a deformable base 
simultaneously at the time Tk. 

Thus, to investigate the arbitrary process of attachment or removal of stamps, ft is 
necessary to solve a system of equationa of the following kind at each step: 

c(t)@' - !,,*),'(Z, t) + (I+ - &*) $ A,,*q'fz, t) = s'(t)-+ C?(r)t --$(I, t), b* =&,,* !r@,, t) 
j-t if.91 

(i=i, . . ..n. m=i,2) 
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Conditions (1.7) with the superscript i are the additional conditions for (1.9). 
Later we will examine the solution of the system of Eqs.(1.9). We will denote the 

operators, tensors, and vectors by capital letters with an asterisk, by capital letters and by 
small letters, respectively, in heavy type. We shall also use tensor analysis symbolism from 
/12/. 

2. We,consider the vector-function a(.r)= a'(~)? and the tensor-function of two variables 
K (2, 5) = k” (z, t) i'i', where ik is the orthonormalized algebraic vector basis of the N-dimen- 
sional Euclidean space V. Here and henceforth the summation will be carried out over repeated 
superscripts, and the superscripts themselves take natural values from 1 to N. 

We will introduce a complete Hilbert space Lr([-I, 11, v) of vector-functions with the 
following global scalar product and norm /13, 14/: 

a(X), bWEL,([- 1, i],V):(a(x), b(s))= 5 a(.r).b(s)dz 

II a (5) II = (a (I), a (x))“’ < 00, a(x).b(r) = i’(x) bk(z) 

We similarly introduce the complete Hilbert space of tensor-functions of two variables 

K (G E), M (I, E) E L, ([- 1, I], v) : [K tx, E), M (x, gl = 

K (5, g..M(x, E)dEcZx, (K(x, E) I= [K(G E), K(G E)l"e 
-1-I 

K (5, 5). .K (x, $J = k”j (x, 5)k’j (x3 5) 

We recall that /13/ 

b b 

s a(x) dx = s uk (5) clxi’, -$a(x)= *ix, a (5) f (x) = [a’ (x) f(x)] ik 

(1 a 

and the vector-function is continuous in X if and only if all its components are continuous 
in 5. 

We designate the expression 

W(x, Q9a(&)) = 5 K(x, E)*a(E)dE 
-1 

(2.1) 

the global scalar product (on the right) of a tensor-function by a vector-function. 

Lemma lo. The vector-function a(x)= &([-I, II, V) if and only if its components s'(x)fZ 
Ls[--1,11, where .&I---1,II is a space of functions square integrable in the segment I-1,%1 

/13/. 
2O. me tensor-function K (x,g)~Lz(I--1,11, V) if and only if its components kij (x, &) E 

Lz[--1,11, where Lz[-I,11 is a space of functions Integrable with its second degree in the 
square I-l,\<x<~,-1<:<~1. 

The following theorem can be proved on the basis of the lemmas. 

Theorem 1. The operator A* formed by the global scalar product (2.1), i.e., 

A*a(x)=(K(x, E), a(&)), K(x, E)EL,([- 1, 11, V) 

is completely continuous from 15s (I-1, 11, V) into Ls (L-1, 11, V); if K (I, E) = KT (E, x) the 
operator A+ is selfadjoint. 

We will examine the question of the expansion of functions from Ls([--1,11, V) and 
L,([--l, 11, V) in series in functional vector bases. Let {Pk*(x)) be a basis of &I--1,11. 
Then (see the lemma) 

where h‘(z) (k = O,..., 00) is a basis of &(I--1, il, V). 
Similarly, 

K (x, &) = k” (x, E) i‘ij = f, 
m 

2 r&p,* (x) p,* (g) i’ij 
nI=o n-lj ~2.3) 
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where if K (x, E) = KT (E, x), then 
i) _ ji 

rmn - rn, * 
We consider the following equation 

c(t) (I* - 4’) q (x, t) + (I’ - L,*) A*q (x, t) = 6 (t) + a(t) x - g (2, t) (2.4) 

with the additional conditions 

i q (I, t) dx = p (& i q(x, t)xdx=m(t) 
-1 -1 

,(2.5) 

where c(t)>0 is a function continuous in t, q(x,t), g(x,t) are vector-functions continuous 

;;oz v A,L" (r-1, 11, V), P (0, m (t), 6 0) and a(t) are vector-functions continuous in t with values 
is a selfadjoint, 

& (I-1: 11, V) 
completely continuous and positive-definite operator from 

into L, (I-1, 11, V), t E IT,,7 ,+1l, the kernels of the Volterra operators L,* and Lz_* 
are continuous in the large or have a weak singularity, where KI,(t,z) = Al, (t,~)(t-~)-~k, where 

Al, 0, z) are continuous functions, O\<rnk< 1 (k = 1,2) /15/. 
Let only q(x,t), p(t) andm(t)be unknown in (2.4) and (2.5). Furthermore, we consider 

the subscripts (if this is not specially stipulated) to vary between 0 and cowhile the sign 2 
denotes summation over one of the repeated subscripts when it runs through all its values. 
Utilizing the classical method of the thoery of operators in Hilbert spaces /16, 17/, we 
represent the solution in the form (see /18/ also) 

q (XT t) = ZOi (t) Cpt (5)~ g (xT t, = xgi” Ct) Cpa tx) 
6 (t) = SK (t) ik = 6’ (t) 2S~‘pi (x) 
a(t) Z = ak (t) xik = CCk (t) XXikqi (5) 

(2.6) 

wherecpi(x)are the eigenvector-functions of the operator A* corresponding to its eigennumbers 
ai'> 0, i.e. 

It is well-known that 
account while substituting 

A*% (4 = ai%, (4 (2.7) 
{Cpi(x)} comprises a basis in &([-I, 11, V). Taking (2.7) into 
(2.6) into (2.4), we obtain 

C+ (t) = (I* + Ni*) 52, (t) (2.8) 
G(t) = Isk (t) Sik + EL (t) Xi’ - g,” (t)ll[aC + C (t)l 

where &'(t,r) is the resolvent of the kernel 

Kko (t, z, ako) = [c (t) K, (t, 7) + ato KZ (t, z)]/[c (t) + aL”l 

and the remaining quantities and determined from (2.5) and (2.6). 
We now construct the eigenvector-functions and eigennumbers of the operator A*. We take 

(pP(x) in the form (see (2.2)) 

'pp (x) = d.P,Pk’ tx) cw 

and K(x, g) in the form (2.3) and we substitute into (2.7), we then arrive at an algebraic 
system of equations with the symmetric matrices (see (2.3)) 

(2.10) 

to find ap" and the coefficients of the eigenvector-functions expansions in the functional 
vector basis. Limiting ourselves to k terms of the basis we obtain the k-th approximation of 
the Bubnov-Galerkin method /19/. 

Taking the system of Legendre polynomials P,* (+) as basis of Lz [-l,l], we obtain, 
written component by component 

qk (5, t) = xwi (t) cpik (5) = BWi (t) MWP,’ (4 

pk (t) = Z&l* (t) 6i” = 2”‘&(t) ai(i) 

mk (t) = h,(t) X,k = (a/s)“1XW, (t) & 

where qk (x, t) are functions continuous in t in Lz l-1, 11 and pk (t) and mk (t) are continuous 
in t. 

3. Now let q(x,t),iS(t) and a(t) be unknown in (2.4) and (2.5). We representL,([-I, 11, V) 
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in theformof a sum of orthogonal subspaces, i.e., 

L2 ([-I, 11, V) == H (i, V) @ H (z, V) @ 152’ (I-l, 11, V) 

where H (1, V) is the space of algebraic vectors, H (x9 v) is the space of vector-functions 
formed by multiplying the algebraic vectors by .z((x E I-1, II), and Lz' (L-1,11, V) is a complete 
Hilbert space of vector-functions from L,([-!,I], L'), and orthogonal vector-functions from 

H(1, V) and H(x, V) /14/. 

We note that pok (x) = 2-‘/:ik and prk (5) = (3/2)'/lx i” respectively, are the functional vector 
bases H(l, V) and H(s, V), and {p,,,'(s)}, say, can be taken as the basis of &"(I-1,11. V) 
(unless otherwise stated , the subscripts in Sect.3 vary between 2 and BJ), where Pk*-(2) in 
(2.2) are orthonormalized Legendre polynomials. 

The following theorem can be proved. 

Theorem 2. lo. The kernel of the oerator A* can be represented in the form 

K(s, 5)=&(x> 5) -t k,'(x) P,‘(S) + PI~(~~I~(E) + (3.1) 

~0' (z) k," (5) + k,' fs) poi (9 + D’~P,’ (4 POT (5) + 

F’j (~0’ (4 p,j (5) + ~1) (4 ~0’ (5)) + E”‘P,~ (4 ~11 (E) 

;IhefleokG:(x)E Lp (I-1, 11, V) (m = 0, 1); Dii. Pj and E'j are 
m 

b 
2. The operator 

B*: B*f(s)=(K,@, 5), e(E)) 

constants; (K, (s, 8, pm’ (5)) = 0 

is completely continuous, selfadjoint, and positive-definite from La"([---1,11, V) into &'(I---{, 
11, V); the eigenvector-functions +k (x) of the operator B* and its corresponding eigen- 
numbers fik', i.e.) 

B*%(s)=pk"'@l;(x) 

form a basis in Lz" (L-1,11, V). 
30. If q(x,t) and g(x,t) are continuous vector-functions in t in &([-I, 11, VI they 

can be represented in the form 

g (I, t)= &,i(t)p,,i(s) + zr* (~)PI<(~) + zzk tt)$ktX) 

g (x, t) = &,’ (t) P,,’ (I) + &hi (t) Pai tx) + &?k @) *k b) 

where Zmi (t), g,’ (t) (m = O,ih Zk (t), gk (t) are continuous functions of t. 
Regarding the first part of the theorem, we refer just to (2.3) and note that 

K, (x, E) = XC&p,'(z) pd (Q, k,’ (x) = %$,~,’ (x) 
rg = D’j , r;i=EiJ, ri’ =F’j (1 =O, 1) 01 

(3.2) 

(3.3) 

The assertions of the second and third parts are based on (3.3), and the relations 

(A*f(x), g(z))=(B*f(x), g(x)), vf(x), g@)EL;([- 1, 11, V) 

are known facts of the spectral theory of operators /16, 17, lS/. 
We note that (3.3) and the remark preceding Theorem 2 enable us to construct 9X (2) and 

Bk as in Sect.2, i.e., 

$k (x) = &(k$i (x)? ~%&(kj = pk%(k) 

Taking account of Theorem 2 and the representations 

kli (I) = Xk;(L,@, (I) (I = 0, 1) 

6 (t) = 2'M' (t) pOi (I), a(t) z = (il/J-‘ltai (t) Pli (4 

we obtain for the desired vector-functions (see (3.1)-(3.4)) 

(3.4). 

zk (t) = - (I* + D,*) ([gk (t) + (I* - L,*) tzli @) &I, + 

zc,’ (t) khO))/[c tt).+ pk’l) 

h*/(t)= &bl(t, T)dz, t E 1% %+I1 
4 

6” (q = y’/z [C(t) (I* - L,*) Zo’ (t) + (I* - L,*) (ZZk (t)&,, $- Di’z; (t) + F’jZl) (t)) f &,i (t)] 
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Ui (f) = ('/#'[C(f) (I’ - L,+) Z,‘(t) + (I+ - L,+) tzzk tf) k’rCl! -t- 
E'h,' (f) + Fjfzoj (f)) -I- g,‘(f)1 

zoi (1) = 2-‘$3’ (t), Zli (t) = (a/*)‘/:~~ (t) 

where Rr' (L, 7) is the resolvent of the kernel Kk” (t,r,&‘)+ zk (t). 6’ (0, a’ (t) are functions con- 
tinuous in t by virtue of the continuity of p’(f), m’(f), c(f) and the conditions imposed on the 
kernel of Volterra operators. 

Thus, vector-functions 5 (f) and a(t) continuous in t and the vector-function q(r, t) con- 
tinuous in t in LX (I-i, 11, VI have been found, where its components are continuous in t in - 
t* l-1, il. 

4. We assume that 6 (f), m(i) and q(z,t) are unknown in (2.4) and 

Lr' (l-i, il, V) = H (r* V) 9 r;; (I--*, 11, V) 

Here {pmk (2)) can be a basis of Lzl([--l, 11, V) (here and henceforth 
scripts take values from 1 to =)- 

Theorem 3. lo. The kernel of the operator A* can be represented in 

K (z, g)= K,(r, E) + pi,{ (r)k'(E) + k'(z)p,'(E, + @'PO' (11 P,’ ffi) 

where k'(s)E Lz* (l-1, il, V); D’j are constants, (& (5, EL poi (5)) = 0, 

K,(.r, t)= XG$np,,,i(~)pnj($ k'(z)= Zr&p,,j(r), Dij= rg 

2O. The operator 

C*: C*f (s) = (K, (2, E), f (f)) 

(2.5). Let 

in Sect.4 the sub- 

the form 

is completely continuous, selfadjoint, and positive-definite from Lr'([---i,ii, V) into .&'(I-I, 
il. V); the eigenvector-functions xk(x) of the operator C* corresponding to its eigennumbers 
ykoT i-e., 

C*xk b) = Yk”Xk h) 

form a basis in Lr’(r-i, II, V). 
3O. If q (z,t) and (a(f) z - g&f)) and vector-functions continuous in t in &(f-i,ilr 

V) they can be represented in the form 

q(& t)= ~~uo'(f)Ro*(f) + =ktf) it.k b) 

a(f) z - g (I, f) = d,’ (f) pO' (r) + 2 dr (f) %k (2) 

where ZLJ,,' (f), wk (f), d,’ (t), and dk (t) are continuous in t. 
Reasoning analogous to that in Sect.3 should be used in proving the theorem, while to 

construct the eigenvector-function and eigennumbers we will have 

Xk fz) = &(kipp* (2)~ &&c’,(k) = Yk”d,,(k, 

By virtue of the fact that 

k' (5) = &'Xk (A?), 6 (f) = 2'/&(f) PO’ (x), xi’ = Z&,‘~k (x) 

end taking account of Theorem 3, we obtain from (2.4) and (2.5) 

Wk (f)= (I* + Vk')(@k (t) -(I* - L~*)kki~~~(f~~/IC(f) + ?k”li 
* 

v,*/(f) = Sf(T)&*(f, T)d% fefr,, %+l] 

5 

iY(t)=2-‘/9[c(t)(I* - L,*)q,*(f) + (I* - L,*)(Xw,(f)kr’ + 

D”zc~’ (f)) - d,’ (f)] 
Z&2,,’ (f) = 2+*$(f), mi (f) = %~*& (f) = (‘/*~‘~~~~ (f) &, 

where Rk2 (1, T) is the resolvent of the kernel &' (t, r, Yk’)- 

5. We will examine one more case when a(t), p(f) and q&t) are unknown in (2.4) and 
(2.5). We set 

t*r (I--1,iL V) = H(!, V)@ L$([-i,il, V) 

where {Pan) can be taken as the basis of &r([--i,il, V) (the subscripts in Sect.5 take all 
values from 0 to 00 except unity). 

Theorem 4. lo. The kernel of the operator A* can be represented in the form 
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K(x> %)=K,(G E) + ~1’(x)k,‘(%)+ k,*(s)p,“(E) + ~??'p~"(.c)plj(f) 

where k,' (.c) E &.'(I--1, 11, V: E" are constants; (K3 (.z, E), p:(E)) = 0; 

K,(.L E)= X#&,p,'(.z)p,j($ k,'(x)= Xr&p,,j(.z), E')=r;; 

2O. The operator 

F*: F*f(t)= (K,(.r, 5), f(E)) 

is completely continuous, selfadjoint, and positive-definite from Lzz([-I, 11, V) into L22 (r-1, 
11, I’); the eigenvector-functions e,(x) of the operator F* 
ukO, i.e., 

corresponding to its eigennumbers 

F*& (z)=n,%, (x) 

form a basis in L,2(l--1, 11, V). 
3O. If q (x, t) and (6 (t) -g (z, t)) are continuous vector-functions in t in Lz (k-1, 11, V) 

they can be represented in the form 

q (I, t)= yli (t)Pl'@) + z"k (t)ek (d 
6(t)- g(& t)=h,'(t)p,'(r) + =k (t)ek(z) 

where ul* (t), h,' (t), uk (4, hk (t) are continuous in t. 
The relationships to find the eigennumbers and vector-functions have the form 

flk (x) = x&k,&,’ (I), Zr%!h(k, = ak”&k, 

Noting that 

k,’ (21) = xk$& (x), a(t) I = (a/y)‘/~~’ (t) pl* (I), ii = xI,‘e, (I) 

by virtue of Theorem 4 we will have from (2.4) and (2.5) 

Vk (t) = (I* + w,*) ([hk (t) - (I* - L,*) &)k;d/k(t) + ak"ll 
U*(t) = (‘/#~ [C (t) (I* - L,*) Vii (t) + (I* - L,*) (Zk;k(‘k (t) + 

E’%,’ (t)) - h,” (t)], ul* (t) = (~/pm’ (t) 

p*(t) = Zzk*Vk (t) = 2”&, (t) &k) 

w,*/(t)= ii(T)&‘(t, T)h t E h ?,+I1 
% 

where fik3 (t. .t) is the resolvent of the kernel Kk'(t,'C, uk'). 

Theorem 5. The solution of Eqs.tZ.4) under conditions (2.5) exists in the selected 
classes of functions (vector-functions), is unique, and can be found with previous assigned 
accuracy by the methods described. 

Note that the series representing the solutions converge inthemean; if 

~~K(r.E)..K(~,I)dE<Z=const, x~[--l,1] (5.1) 

then they converge regularly; moreover, if the vector-function g(x, t) is continuous in x and 
the tensor-function K(x,Q is continuous in the large, i.e., 

{ I K (x1, %I - K (G %I I d% <e3 I xl - x2 I <6 

,G (x, %) 1 L- (M (2, f) . .M (G %))“l 

(5.2) 

then the solutions are continuous functions (vector-functions) in x (see /15/j. 
We also note that the spectrum of the operator A* does not agree with the spectra of the 

operators B*, C*, F*. This enables us to investigate problem (2.4),-(2.5) in the formulations 
of Sects.3-5 in the spectrum of A*. 

6. We will now consider the system of Eqs.tl.9) with additional conditions of type (1.7). 
It is seen that they represent (2.4) and (2.5) written component by component. It can be shown 
that the operator A* that occurs when solving contact problems is completely continuous, self- 
adjoint, and positive-definite from L,([--1,11, V) into L,([--1,11, V), and its kernel satisfies 
conditions (5.1) and (5.2). Therefore, the solutions of the fundamental systems of two- 
dimensional integral equations have been constructed. 
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The following modified formulations are possible in probems on systems of attached stamps. 
lo. The settlings and angles of rotation are known, it is required to find the contact 

stresses, forces ana moments (see Sect.2). 
2O. The forces and moments are known, it is required to find the contact stresses, settle- 

ments, and angles (see Sect.3). 
3O. The forces and angles of rotation are known, it is required to find the contact 

stresses, settlements and moments (see Sect.4). 
4O. The settlements and moments are knonw, it is required to find the contact stresses, 

forces and angles of rotation (see Sect.5). 
It is natural that at the times TE of attachment (removal) of the stamps, the desired 

quantities can have finite jumps in values since the system of resolving equations changes. 
The jumps of the desired quantities can appear even in the case of a system of stamps fixed 
in a given time interval if the functions being given undergo jumps in this interval. 

The need to verify the physical content of the solution at each instant, i.e., the 
presence of compressive stresses under the stamps, should especially be noted. The time at 
which a change in the sign of the stress occurs at at least one point is the time the stamp 
begins to peel off from the base , and the proposed methods are not applicable for a further 
investigation of the process. The presence of compressive stresses under all the stamps at 
a certain time does not indicate that changes in the signs of the stresses could not have 
ocurred at previous times; consequently, it is important to investigate the whole time interval 
inwhichthe process develops. 

Considering the peeling off not to have occurred, we formulate a correspondence principle 
for one special case. Let the viscoelastic bases under consideration age homogeneously and 
let their layers be fabricated from one material at identical times, i.e., in (2.4) 

c(t) = c", L,*=L,*=L*, (I* -L*)-'=(I* +- N*), g(r, t)=O 

then for systems of simultaneously applied stamps with flat bases the following assertions 
are valid. 

1) In the formulation 1" 6 (t) = 6" (t), a (t) = a0 (t), q (x, t) = (I* + N*) q0 (x, t), p (t) = (I* + 
N*) p" (t), m (t) = (I* + N*) m" (t). 

2) In the formulation 2" q (x, t) = q" (x, t), p (t) = p" (t), m (t) = m" (t), S (t) = (I* - L*) 6" (t) , 
a (t) = (I* - L*) a" (t). 

3) In the formulation 3O for given zero angles of rotation a(t) = a'(t) = 0, q(x, t) = q'(x, 
t), p (t) = p" (t), m (t) = m" (t), 6 (t) = (I* - L*) s" (t). 

Here the symbol o denotes solutions of problems without taking account of creep (elastic 
problems). 

Assertions 1) and 2) are a generalization of those known for isolated stamps while 3) 
yields a new result: in order for stamps of a certain system applied simultaneously to a 
viscoelastic homogeneous ageing base not to experience a mismatch, forces and moments obtained 
from the solution of the analogous elastic problem should be applied; the stresses here agree 
with the elastic stresses while the settlement will vary according to the law from 3). The 
formulation 4' yields no physically meaningful correspondence principle. 

We will present some other useful formulas. In the formulated contact problems (see (1.5), 
(2.31, /5/j 

by taking into account that (&*(z)} in (2.3) are Legendre polynomials and 

rX (4 = f 
em + I) m + I) )” L(u) 

& yd,*+“(~)Jl,,+n(~) 

we obtain by using /20/ 

(6.1) 

nt+Il-l 

(- I)7 Rz,, (1=&m andn- even; 1-2, 
. 

r’in = 
mandn- odd) 

tn+*-k 
(- 1)T pi,, (k=i,m- even and n- odd; 
k=- 1 otherwise) 
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We note that a kindred problem about the attachment of viscoelastic covers to an elastic 
half-plane was studied in /21/, where the solution was constructed by the method of orthogonal 
polynomials with the investigation of an infinite system of Volterra integral equations. 

Example. We consider a concrete foundation with constant elastic characteristics. We 
represent the creep measure in the form /8/ 

and we are given the following 

C (1, T) = (C, + A&') (1 - e-v+r)1 

values /8, 22/: 

C,E = 0.5522, A,,E = 4, Y = 0, i 
'TV = 0, p = 0,03iday_l,l' = 0.06 day-1 

The inhomogeneous ageing parameter P /lo, 23, 24/ is the inhomogeneous ageing character- 
istic of the upper layer. We will consider the lower layer to be rigidly clamped, then /5/ 
(see (6.1)) 

L(u)= 2xsh2u-44u 
2xch2u$4us+l+xa ’ 

x-3-4v 

Furthermore, in conformity with (1.5), we take 

c (t) = 0.2, h = 24, c1 = 1, 5% = 2, n1 = 0, 98 = 5 
M,(t)=M,(t)=O,P,(t)=1,P,(t)=2,g,(s) =gn(')=O 

i.e., the length of the contact line of the first stamp (br--1) is half the length of the 
contact line of the second (b,- al), The spacing between them is (b,- al). The force acting on 
the second stamp is four times greater thanthatforthe firststamp, theyare appliedcentrally 
(the moments and zero). The thicknesses of the layers are characterized by c(t) and h. The 
first stamp is applied at time 1 and the second at the time 7%. The actual time of application 
of the first stamp rl is measured in days and is a time scale coefficient (see (1.5)). 

We will investigate the behaviour of the fundamental dimensionless characteristics (see 
(1.5)) under a homogeneous (p = l,z, =20 days and z1 = 100 days), natural inhomogeneous (the 
age of the upper layer diminishes with height; TV = 10,~,= iU0 days) andartificialinhomogeneous 
(the age of the upper layer grows with height; TV = O,i,r,= 20days) ageing processes as a 
function of the time of application of the second stamp rz. The curves on the graphs for the 
three ageing cases will be denoted by solid, dashed, and dash-dot lines, respectively. To 
identify the state under the different stamps , we construct the graphs in coordinates, where 
%=~*&+ni,i.e., for the first stamp (1= i)- 1 <so< 1, and for the second stamp (f= 2)2<~0< 
7 (we will henceforth omit the zero subscript on the 2). The values of the contact pressures 
magnified ten times are plotted along the q axes. The dependences of the settlements on 
time are constructed in a real scale on the 6 and t axes , and the angles of rotation magnified 
a hundredfold are on the cr, and n, and t axes. The curves of the settlements and angles of 
rotation for the first and second stamps are denoted by dark and light circles, respectively. 

The contact pressure distributions under the stamps are shown in Fig.1 for the cases of 
natural and homogeneous ageing at the time t=1.5. For curves 1 and 2 the time of application 
of the second stamp is r2= 1 and r2 = 1.5 respectively. We recall that the first stamp is 
always applied at time 1. In the homogeneous ageing case, the stress distributions under the 
first stamp differ slightly for different times of application of the second stamp and are 
represented by one curve. 

cm simultaneous application of the stamps in the homogeneous ageing case, the stresses 
are independent of the time (see the correspondence principle) and are represented by the 
solid curves 1. The same curves describe the stresses at the time t= i for simultaneous 
application of the stamps in the case of natural inhomogeneous ageing, while at the time 
t=1.5 the stress distribution are described by the dashed curves 1. Therefore, a tendency 
is noted towards substantial smoothing of the state of stress with time because of the natural 
inhomogeneous ageing. 

Non-simultaneous stamp application for homogeneous ageing manifests a tendency towards 
an increase in the stress distribution non-uniformity under the stamps with time, although 
the instantaneous distributions at the time of application of the second stamp are more 
uniform than under simultaneous action. The effects mentioned are slight for the first stamp. 

For non-simultaneous action of stamps in the case of natural inhomogeneous ageing, super- 
position occurs of the tendencies to smoothing of the state of stress in time due to the kind 
of ageing and to an increase in its non-uniformity because of the difference in the application 
times. Thus, under the action of the second stamp at the time r,== 1.25 the stress distri- 
butions are smoothed out under both stamps; they are smoothed out under the first stamp for 
T* = 1.5 but are not under the second. c The time of application of the second stamp consider- 
ably affects the instantaneous distributions and their change with time for both stamps 
(compare the dashed curves 1 and 2). 
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Fig.2 

Fig.3 

The contact stress distribution curves for the cases investigated have the shape of 
parabolas with maxima at the stamp edges remote from each other. !rhe asymmetry of the distri- 
bution curves is not very clear I which is a result of the absence of moments (central appli- 
cation of the forces). 

Fig.2 shows the dependences of the change in settlement on the time for the homogeneous 
and natural inhomogeneous ageing cases. The lower curves represents the change in settlement 
of the first stamp with time in the absence of the second stamp. The points mark the different 
times of application of the second stamp, where the settlement under the first stamp undergoes 
an unpward jump along the vertical between the dark points, while the open circle on this 
same vertical denotes the initial settlement of the second stamp. 

Fig.3 shows the changes in the angles of stamp rotation with time as a function of the 
factors taken into account in studying settlement. The angle of rotation a, of the first 
stamp at the time of application of the second stamp undergoes a jump from zero to the value 
denoted by the dark point, while the initial value of the angle of rotation of the second 
stamp a, is denoted by the open circle. The kind of ageing has only a slight influence on the 
nature of the change in the angle under the first stamp but is substantial under the second. 

Fig.4 shows the contact stress distributions under the stamps for the artificial in- 
homogeneous and homogeneous ageing cases at the time t= 2. For curves 1 and 2 we have r* = 1 
and z*= 2, respectively. In the homogeneous ageing case one curve is shown for the first 
stamp for the reasons stipulated earlier. 

The solid curves 1 show the stress distributions for simultaneous application of the 
stamps for the homogeneous case at any time and for the artificial ageing case at the time of 
action t= 1. The dash-dot curves 1 describe the stress distributions at the time t=2 for 
simultaneous application of the stamps to an artificially inhomogeneously ageing base. The 
tendency towards a substantial increase of the stress distribution non-uniformity with time 
because of the artificial inhomogeneous ageing can be seen here. 

The tendency to an increase in the contact stress distribution non-uniformity because of 
the non-simultaneity of stamp application was discussed earlier. Thus, for non-simultaneous 
stamp application in the case of an artificial inhomogeneous ageing , as a rule superposition 
occurs of these analogous tendencies , and the contact stress distribution non-uniformity 
increases under both stamps with time. However, the times of application of the second stamp 
were detected for the case noted when the stress distribution curves under the first stamp 
underwent qualitative changes, or peeling off of the first stamp occurred (peeling off of the 
upper from the lower layer). Indeed, the dash-dot curves 2 display the stress distributions 
at the time of application of the second stamp T* -2. The contact pressures under the first 
stamp at this time are described by a two-humped curve with a minimum at the right edge 
(peeling off occurs at this layer for the time of application Q= 2.2). Note that a two- 
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humped distribution curve is rectified with time and later acquires the usual parabolic shape. 

1 01 X 
-I 4 I"3 5 7 

Fig.4 

0 I t t 
1 2 3 1 : 3 

Fig.5 

3a 

Fig.6 

Fig.5 shows the dependences of the change in settlement under the stamps on time for the 
homogeneous and artificial inhomogeneous ageing cases. The notation is analogous to that in 
Fig.2. Here we merely note that the jump in the settlement under the first stamp is negative 
for artificial inhomogeneous ageing at z,=t= 2, i.e., it is somewhat elevated. 

Fig.6 shows changes in the angles of rotation of the stamps with time matched to the 
cases investigated for the settlement. The solid curves on the graphs also enable one to 
track the influence of the time of homogeneous foundation fabrication on the stress, settlement 
and angles of rotation. 

1. 

2. 

3. 

4. 

5. 

6. 
7. 

8. 
9. 

The author is grateful to N.Kh. Arutyunyan for discussing the research. 
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PERIODIC SOLUTIONS OF SYSTEMS WITH GYROSCOPIC FORCES* 

S.V. BOLOTIN 

The lower limit for the number of periodic solutions of the equations of motion of a 
material point in n-dimensional Euclidean space under the effect of potential and gyroscopic 
forces is proved. 

We consider a system with the gyroscopic forces /l/ 

(A (t) 2')' = rz + Ux (t, t). z E En (4) 

whereA (t)is a symmetric positive-definite matrix, ts-periodically continuously dependent on 
time, ,JJ is a constant skew-symmetric matrix of the gyroscopic forces, and the potential u 
depends 2n-periodically continuously on time, has continuous second derivatives with respect 
to the space variables and is periodic in them, for example 

U (I + k, t) E U (a+:) (2) 

for all integer vectors kEZCR”. 

Theorem. If the system 
(A (t) 0')' = I'+' (3) 

has no non-constant Zn-periodic solutions, then system (1) has no less than n-l-1 different 
Zs-periodic solutions, and when multiplicity is taken into account, no less than 2". Solutions 
differing by a shift in the period of the potential are considered to be identical. 

The conditions of the theorem mean that A (t)z’ -r+ has no Floquet multipliers equal to 
one. If the potential U is small, then the assertion of the theorem can be obtained by 
methods of Poincare perturbation theory. 

System (1) is Lagrangian with the Lagrange function 

L (r, a?, t) = I/, (A (t) z’, 2’) + I/, (W. =) + u h t) (4) 

We will seek Zn-periodic solutions of system (1) as critical points of the Hamilton 
action functional 

*Prikl.Matem.Mekhan.,51,4,686-688,1987 


